Worksheet # 23: Definite Integrals

The following summation formulas will be useful below.

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}, \qquad \sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

1. Find the number n such that $\sum_{i=1}^{n} i = 78$.

2. Give the value of the following sums.

(a)
$$\sum_{k=1}^{20} (2k^2 + 3)$$

(b) $\sum_{k=11}^{20} (3k + 2)$

3. Recognize the sum as a Riemann sum and express the limit as an integral.

$$\lim_{n \to \infty} \sum_{i=1}^n \frac{i^3}{n^4}$$

- 4. Let f(x) = x and consider the partition $P = \{x_0, x_1, \ldots, x_n\}$ which divides the interval [1,3] into n subintervals of equal length.
 - (a) Find a formula for x_k in terms of k and n.
 - (b) We form a rectangle whose width is $\Delta x = (x_k x_{k-1})$ and whose height is $f(x_k)$. Give the area of the rectangle.
 - (c) Choose the sample points to be the right endpoint of each subinterval. Form the Riemann sum, and use the formula for sums of powers to simplify the Riemann sum.
 - (d) Take the limit as n tends to infinity to find the area of the region under f(x) for $1 \le x \le 3$.
 - (e) Find the area above using geometry to check your answer.

5. Suppose
$$\int_0^1 f(x) \, dx = 2$$
, $\int_1^2 f(x) \, dx = 3$, $\int_0^1 g(x) \, dx = -1$, and $\int_0^2 g(x) \, dx = 4$.

Compute the following using the properties of definite integrals:

(a)
$$\int_{1}^{2} g(x) dx$$

(b) $\int_{0}^{2} [2f(x) - 3g(x)] dx$
(c) $\int_{1}^{1} g(x) dx$
(d) $\int_{1}^{2} f(x) dx + \int_{2}^{0} g(x) dx$
(e) $\int_{0}^{2} f(x) dx + \int_{2}^{1} g(x) dx$

- 6. Suppose that f is a continuous function and $6 \le f(x) \le 7$ for x in the interval [3,9].
 - (a) Find the largest and smallest possible values for $\int_3^9 f(x) dx$.
 - (b) Find the largest and smallest possible values for $\int_8^4 f(x) \, dx$.

7. Suppose that we know $\int_0^x f(t) dt = \sin(x)$, find the following integrals.

(a)
$$\int_{0}^{\pi} f(t) dt$$

(b) $\int_{\pi/2}^{\pi} f(t) dt$
(c) $\int_{-\pi}^{\pi} f(t) dt$
8. Find $\int_{0}^{5} f(x) dx$ where $f(x) = \begin{cases} 3 & \text{if } x < 3 \\ x & \text{if } x \ge 3 \end{cases}$.

9. Simplify

$$\int_a^b f(t) dt + \int_b^c f(u) du + \int_c^a f(v) dv.$$

Math Excel Worksheet Supplementary Problems # 23

10. In this exercise, we evaluate the area A under the graph of $y = e^x$ over [0, 1] using the formula for a geometric sum (valid for $r \neq 1$):

$$1 + r + r^{2} + \dots + r^{N-1} = \sum_{j=0}^{N-1} r^{j} = \frac{r^{N} - 1}{r-1}$$

(a) Show that
$$L_N = \frac{1}{N} \sum_{j=0}^{N-1} e^{j/N}$$
.

(b) Apply the above formula for a geometric sum to prove $L_N = \frac{e-1}{N(e^{1/N}-1)}$.

- (c) Compute $A = \lim_{N \to \infty} L_N$ using L'Hôpital's Rule.
- 11. Use the result of Exercise 10(c) to show that the area under the graph of $f(x) = \ln x$ over [1, e] is equal to 1. *Hint:* Relate the area under the graph of $f(x) = \ln x$ over [1, e] to the area computed in Exercise 10.
- 12. Suppose that $\int_0^x f(t) = \cos(x)$ and $\int_0^x g(t) = 4x^2 7$. Compute the following

(a)
$$\int_{0}^{\pi} (f(t) + g(t)) dt$$

(b) $\int_{\pi}^{4\pi} f(t) dt$
(c) $\int_{3}^{10} 2g(t) dt$
(d) $\int_{-\pi}^{3\pi} (g(t) - f(t))$

13. Compute the integral $\int_0^4 (2x^2 + x) dx$ by computing Riemman sums for a partition of the interval into subintervals of equal length and then taking the limit as the number of subintervals approaches infinity.

dt

14. Prove that for any function f(x) on [a, b],

$$R_N - L_N = \frac{b-a}{N}(f(b) - f(a))$$